-
- 연구보고서
- 이슈+
- 인재채용
- 연구원개요
- 정보공개
- 고객헌장 및 서비스 이행표준
- 학술지
- 농정포커스
- 공지사항
- 조직도
- 공공데이터 개방
- VOC 처리절차
- 글로벌 정보
- KREI논단
- 보도자료
- 원장실
- KREI 정보공개
- 개인정보 처리방침
- 농업농촌국민의식조사
- 주간브리프
- KREI I-zine
- 연구사업소개
- 사업실명제
- CCTV 설치 및 운영안내
- 세미나
- 농업농촌경제동향
- 농경나눔터
- 경영목표
- 연구협력협정 체결현황
- 홈페이지 저작권 정책
- 농식품재정사업리포트
- 동정&행사
- 윤리경영
- 해외출장연수보고
- 이메일 무단수집 금지
- 농업관측정보
- 연구제안
- 신고센터
- 질의응답
- 인권경영
- 체육시설 및 주차장 운영안내
- 뉴스레터
- 임업관측정보
- ESG경영
- KREI CI
- 찾아오시는 길
-
- 연구보고서
- 농촌경제
- 세계농업정보
- 개요
- 자료집
- 채용안내
- 원장 인사말
- 인권경영비전
- 안내
- 경영정보공시
- 국내
- 제1장 총칙
- ESG경영목표및전략
- 수시연구과제
- 논문기고안내
- 해외곡물시장동향
- 정보그림
- 채용공고
- 원장 약력
- 인권경영 추진체계
- 공공데이터 수요조사
- 사전정보공표
- 국외
- 제2장 공정한 직무수행
- ESG경영 추진체계
- 2024년 기본·일반연구보고서
- 논문작성도우미
- 농축산물수입동향(FTA)
- 조사결과
- 친인척 채용인원 공개
- 역대 원장소개
- 인권침해 구제절차 신고
- KREI 핵심정보
- 제3장 부당 이득의 수수 금지 등
- ESG 실천과제 및 추진성과
- 관련자료
- 인권경영 활동/교육
- 참고자료
- KREI RESEARCHER
- 제4장 건전한 공직풍토의 조성
- ESG성과평가
- 인권경영 지침/자료
- 제5장 위반시의 조치 등
- ESG경영위원회 운영기준
- 제6장 보칙
연구보고서
농림업분야 빅데이터 활용도 제고 방안

목차
제1장 서론
제2장 농림업분야 빅데이터 개요와 활용 실태
제3장 국내외 빅데이터 활용사례 분석
제4장 농림업분야 빅데이터 활용 수요분석과 전망
제5장 농림업분야 빅데이터 활용도 제고 방안
제6장 요약 및 결론
요약문
정보통신기술(ICT)이 발달함에 따라 데이터 양이 폭발적으로 증가하고 있다. 최근에 이러한 빅데이터를 활용하여 새로운 가치를 창출하려는 시도가 많아지고 있다. 이미 타산업분야나 외국에서는 빅데이터를 활용하여 생산효율성 증대, 수급예측뿐만 아니라 사물인터넷(IoT)이나 인공지능(AI) 단계까지 발전을 꾀하고 있다.
국내 농림업분야는 빅데이터 활용을 시도하고 있으나 아직 초기단계이다. 빅데이터 활용 수준이 낮은 주요 이유는 빅데이터 활용에 대한 이해도가 낮으며 데이터 수집 및 분석에 어려움이 있기 때문이다.
국내 농림업분야도 타산업분야 및 외국 수준에 맞추어 빅데이터를 활용도를 높일 수 있는 방안이 필요하다. 이러한 배경에서 본 연구는 농림업분야의 빅데이터 활용 현황 및 실태, 국내외 활용사례 분석, 빅데이터 수요조사를 통해 빅데이터 활용도를 제고할 수 있는 방안을 제시하기 위해 수행하였다.
Background of Research
In today’s world of business, there has been a tremendous interest in developing the uses of Big Data to create new values. The domestic agricultural sector has also tried to apply Big Data in political decision-making and conducting research projects. However, Big Data application in the agriculture sector is still at an early stage compared to other industries in the country. Several developed countries such as the US and Japan have widely been applying Big Data in the agriculture sector to help in agricultural decision-making. Thus, there is a need to enhance the application of Big Data in the agricultural sector to provide more valuable information to decision makers in agriculture and other industries. A comprehensive analysis of data, not only from the agriculture sector but also from the massive amount of transactions being accumulated in real-time and from other departments and private sectors is needed.
The purpose of this study is to identify the current conditions and utilization of Big Data in the agricultural sector and to propose solutions for a viable use of Big Data by analyzing both domestic and overseas practical application examples of Big Data, and investigation of the demand for Big Data utilization.
Method of Research
The research methods included the examination of related literature and materials, an online search for both domestic, and overseas practical uses of Big Data, and evaluation for each indicator. These were used to categorize both national and foreign examples of practical use of Big Data, and to diagnose the level of domestic utilization compared to that used overseas, and to propose directions. Also, a survey was conducted of 158 people including Big Data experts, agricultural information experts, industrial experts, and policy makers among others to investigate demands for Big Data utilization in the agricultural industry. At the same time, the important elements for the effect of latent demand were drawn by Ordered Logit model assumption based on the results of the survey. Furthermore, restrictions and improvement for the agriculture industry, an improvement plan for Big Data utilization, an in-depth analysis of the practical use of Big Data were concluded by a thorough analysis of findings from the survey of the experts.
Results and Implications
The significant restrictions for utilization of Big Data include low quality of data, insufficient data and difficulties gathering it, and lack of development of Big Data for the domestic agriculture industry. It is necessary to set the target for uses of Big Data in the domestic agriculture sector similar to that in the field of IoT or AI and to establish cloud-based infrastructure for farming management consulting, information on crop volume, production history, and environment management.
To improve the understanding of Big Data usage, first, it is necessary to systematically promote the concept, its practical use, necessity, and value of use by expanding the education and sensitization of Big Data utilization. To achieve this understanding, it is necessary to publish and distribute case studies of Big Data uses that include examples of practical use and application in the sector. Secondly, when considering the idea whether to conduct analysis depending on the purpose of the data’s use, it will require many trials of scenarios of Big Data analysis for enhancing uses of Big Data and promoting Big Data to the public. Finally, by investigating and benchmarking the examples of practical use of Big Data in other domestic industries and overseas utilization, the outcome of practical use for Big Data can be increased. Business entities may benchmark examples of the U.S.A’s C3 and C8, and Japan’s D2, D3, and D7. For improvement of productivity, one may benchmark Japan’s D1, D2, D3, and D4, and other domestic industries’ B1, B3, and B4 for the marketing sector.
To increase the possibility of successful analysis of Big Data, restrictions on expansion on open and sharing data, improvement of data quality, and data utilization must be improved. Firstly, one may benchmark district level (e.g., Si, Gun, and Gu) statistical data, examples of their use, examples for practical use of the National Statistical Office (NSO)’s data center; examples of expansion of practical use by technical process for data in order to expand open and sharing data. Also, the government needs to improve appropriate systems actively. Secondly, it is necessary to standardize data and newly establish and correct missing data to improve the data quality. Finally, the difficulties of gathering data may be solved by providing or utilizing data by deleting personal identification information and doing this with related associations or producer groups rather than accessing it individually. If one tries to gather and analyze Big Data, the utilization will increase significantly when a professional institute provides services such as Big Data gathering and provision and Big Data analysis.
The measures to improve utilization of Big Data in the agriculture sector can be classified into the following categories: education and promotion for improving utilization of Big Data; expansion of open and sharing data system; improvement of data quality, and systems development. To achieve this growth, the government, public entities, and private organizations need to work together cooperatively. Most of all, the government needs to play an important leading role in education and promotion to improve utilization of Big Data; in developing the system for expansion of open and sharing data system; in data management for upgrading, standardization, and consistency of Big Data; and in the establishment and operation of Big Data dedicated institutes. This approach will achieve improved understanding of the utilization of Big Data.
To improve expertise in utilizing data in the agriculture industry, a Big Data special organization must be created. Since data from the agriculture industry differs from that of other industries regarding quality attributes and uniformity, an expert institution, which specializes in the agriculture sector, is needed. This dedicated organization needs to gather Big Data, establish an open system for sharing, prepare guidelines for open data of public entities, and enhance integration with national-level Big Data-holding organizations. To improve utilization of Big Data, systems improvement and amendment of regulations need to be conducted by reviewing and revising laws and regulations which restrict open data sharing.
The public sectors need to play an important role in improving utilization of Big Data through gradually collaborating with other areas such as research and business to expand the data scope and extent of sharing. Public entities should actively cooperate with governments to establish new policies for developing information standards and data sharing. The roles of the private sectors in understanding the needs of Big Data analysis, and acknowledging several challenges in Big Data analysis should be defined. The National Agricultural Cooperative Federation and farming households should identify the importance of Big Data utilization, and find the value from data sharing.
Since usage of Big Data in the domestic agriculture industry is at an early stage, improvement of the utilization value of Big Data and potential consumers' understanding of it are required. Mid and long-term plans targeting the level of parity with IoT and AI should be established and supported to invigorate the utilization of Big Data, in the long run.
Researchers: Kim Kyungphil, Koo Jachoon, An Hyunjin and Han Junghoon
Research Period: 2016. 1. ~ 2016. 10.
E-mail address: kkphil@krei.re.kr
저자정보

저자에게 문의

구매안내
KREI의 출판물은 판매 대행사 (정부간행물판매센터)와 아래 서점에서 구입 하실 수 있습니다.
판매대행사
판매서점
교보문고 | http://www.kyobobook.co.kr |
---|---|
영풍문고 | http://www.ypbooks.co.kr |
알라딘 | http://www.aladin.co.kr |
-
상세정보 조회93996
-
좋아요1
-
다운로드589
같은 분야 보고서
-
식량 위기에 관한 인식 및 대응 현황 조사 분석
최윤영2024.12.30KREI 보고서 -
농업인 디지털정보화 증진 방안 연구
심재헌2024.10.30KREI 보고서 -
저출생·초고령화에 관한 농촌 주민의 경험과 인식: : 초점집단토론 자료(1)
김정섭2024.12.30KREI 보고서 -
인구구조 변화에 따른 식품시장 대응과제 (1/2차년도)
박미성2024.12.30KREI 보고서 -
그린바이오 산업의 성장산업화 방안연구(1/2차년도) - 종자 및 마이크로바이옴산업 중심으로
윤종열2024.12.30KREI 보고서 -
2024년 농업·농촌에 대한 국민의식조사
김수린2024.12.30KREI 보고서 -
농촌 주민이 생각하는 지역사회의 저출생·초고령화 대응 과제 : 초점집단토론 자료(2)
김정섭2024.12.30KREI 보고서 -
지역별 농지거래 실태 분석
채광석2024.12.30KREI 보고서 -
저출생·초고령화에 대응한 농촌정책의 전환(1/2차년도)
김정섭2024.12.30KREI 보고서 -
순환경제 이행을 위한 농식품산업 업(리)사이클링 전략 연구
우병준2024.12.30KREI 보고서
- 다음글
- 농산업분야 청년 고용 활성화 방안
- 이전글
- 농업·농촌 정책 지원을 위한 통합 공간정보인프라 구축 기초 연구(2/2차년도)